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ABSTRACT 

Fluctuations in prey abundance, composition, and distribution can impact predators, and 

when predators and fisheries target the same species, predators become essential to ecosystem-

based management. Because of the difficulty in collecting concomitant predator-prey data at 

appropriate scales in patchy environments, few studies have identified strong linkages between 

cetaceans and prey, especially across large geographic areas. During summer 2018, a line-

transect survey for cetaceans and coastal pelagic species was conducted over the continental 

shelf and slope of British Columbia, Canada and U.S. West Coast, allowing for a large-scale 

investigation of predator-prey spatial relationships. We report on a case study of humpback 

whales (Megaptera novaeangliae) and their primary prey—Pacific herring (Clupea pallasii), 

northern anchovy (Engraulis mordax), and krill—using generalized additive models to explore 

the relationships between whale abundance on 10-km transect segments and prey metrics. Prey 

metrics included direct measures of biomass densities on segments and an original hotspot 

metric. For each prey species, segments in the upper 5th percentile for biomass density (across all 

segments) were designated hotspots, and whale counts on a segment were evaluated for their 

relationship to number of hotspot segments (species-specific and multi-species) within 25, 50, or 

100 km. Whale abundance was not strongly related to direct measures of biomass densities, 

whereas models using hotspot metrics were more effective at describing variation in whale 

abundance, underscoring that evaluating prey at relevant and measurable scales is critical in 

patchy, dynamic marine environments. Our analysis highlighted differences in the distribution 

and prey availability for three humpback whale Distinct Population Segments (DPSs) as defined 

under the U.S. Endangered Species Act, including Threatened and Endangered DPSs that forage 

within the California Current Large Marine Ecosystem. These linkages provide insights into 
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which prey species whales may be targeting in different regions and across multiple scales, and 

consequently, how climatic variability and anthropogenic risks may differentially impact these 

distinct predator-prey assemblages. By identifying scale-appropriate prey hotspots that co-occur 

with humpback whale aggregations, and with targeted, consistent prey sampling and estimations 

of potential consumption rates by whales, these findings can help inform the conservation and 

management of humpback whales within an ecosystem-based management framework. 
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INTRODUCTION 

Spatiotemporal relationships among predators and prey are foundational to studies of 

ecology. In marine environments, changes in prey abundance, composition, and distribution can 

directly impact the survival, growth, and reproductive success of apex predators such as seabirds 

(e.g., Anderson et al., 1982; Davis et al., 2005; Ainley et al., 2018), pinnipeds (e.g., Soto et al., 

2004; McClatchie et al., 2016; Lowry et al., 2017), and cetaceans (e.g., Le Boeuf et al., 2000; 

Meyer-Gutbrod et al., 2021). Understanding trophic linkages is beneficial for implementing 

ecosystem-based management strategies, especially if predator populations are threatened or 

endangered. Further, these assessments provide context for understanding increasing risk or 

predator response to climate-driven shifts in prey and the environment (Poloczanska et al., 2013; 

Silber et al., 2017), mitigating adverse effects of harvesting forage species by commercial 

fisheries (Surma & Pitcher, 2015; Koehn et al., 2020), and other anthropogenic threats such as 

entanglement in fishing gear (Santora et al., 2020) and ships strikes (Meyer-Gutbrod et al., 

2021). 

It has been historically difficult to model the relationship between cetacean predators and 

their prey. Coinciding observations of non-cetacean predator and prey data increases the 

explanatory strength of predator-prey models (e.g., Rose & Leggett, 1990; Fauchald et al., 2000; 

Benoit-Bird et al., 2011), but due to logistic constraints of working in offshore marine 

environments, data are often not collected this way. Studies including cetaceans that did not find 

strong correlative linkages between predators and their prey were compromised by mismatches 

in measured and observed processes, i.e., data were collected at different temporal and spatial 

scales, with different resolutions and coverages (e.g., Fauchald et al., 2000; Torres et al., 2008). 
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In addition to coincident data collection, collecting predator or prey data at the 

appropriate spatial or temporal scales is a challenge. For example, data collected at finer scales 

provide insight to a foraging predator’s perspective (e.g., Hazen et al., 2009; Kirchner et al., 

2018; Miller et al., 2019; Cade et al., 2021), but inferences may be limited to a subset of the 

population, especially for highly mobile predators that are more broadly distributed. Finding the 

appropriate scale becomes more complicated with multi-species research, where the relevant 

scales for one species might differ from another. Therefore, a multi-scale assessment may 

enhance understandings of ecosystem function and inform ecosystem-based management. 

Several studies have examined predator-prey relationships across multiple scales, most 

notably involving seabird observations and acoustics to sample their prey (e.g., Schneider & 

Piatt, 1986; Russell et al., 1992; Logerwell & Hargreaves, 1996; Logerwell et al., 1998; Mehlum 

et al., 1999; Fauchald et al., 2000). On coarser scales (e.g., 100s of km), predator and prey 

densities tended to be positively correlated, while at finer scales (e.g., 10s of km) correlations 

tended to be negative, hypothetically resulting from prey depletion, behavioral patterns (e.g., diel 

vertical migration), or predator avoidance response by prey (Haury et al., 1978; Logerwell & 

Hargreaves, 1996; Fauchald et al., 2000). Heterogeneity of prey aggregations occurs at every 

scale, with finer-scale relationships hierarchically nested within coarser ones (Fauchald et al., 

2000). The strength of scale-dependent relationships will vary depending on how prey 

heterogeneity is incorporated in predator-prey models. Furthermore, predator-prey linkages may 

be better quantified using prey metrics that integrate information about prey availability, 

aggregation, quality, or combinations of these (Hooker & Gerber, 2004; Gende & Segler, 2006; 

Hazen et al., 2013; Santora et al., 2017). Therefore, in this study we examine functional 

relationships between a highly mobile and generalist predator and multiple prey species, using 
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both density and counts of prey species hotspots (areas of high concentration), across fine, 

regional, and large ecosystem scales. 

In 2018, the National Oceanic and Atmospheric Administration (NOAA) Southwest 

Fisheries Science Center conducted a joint stock assessment survey (California Current 

Ecosystem Survey; CCES) for commercially important fish stocks, concurrently with visual 

surveys for marine mammals (Stierhoff et al., 2019; Henry et al., 2020). The fish stocks, referred 

to as “coastal pelagic species” or CPS, comprised Pacific sardine (Sardinops sagax), Pacific 

mackerel (Scomber japonicus), jack mackerel (Trachurus symmetricus), northern anchovy 

(Engraulis mordax), and euphausiids (hereafter, “krill”). The survey sampled a large portion of 

the summer distribution of humpback whales (Megaptera novaeangliae); including biologically 

important areas (BIAs) for feeding humpback whale populations (Fig. 1; Calambokidis et al. 

2015; Federal Register, 2021). Thus, we use humpback whales as a case study within the 

California Current Large Marine Ecosystem (CCLME) to address challenges of modeling 

predator-prey relationships to provide context to benefit fishery and protected resources 

management at regional and large marine ecosystem scales. 

Here, we use multi-scale data collected in 2018 over a large spatial extent throughout the 

CCLME to explore and evaluate several different modeled predator-prey relationships between 

synoptically surveyed humpback whales and their three dominant prey species in this 

ecosystem—herring, anchovy, and krill. Specifically, our investigation considered: (1) a prey 

hotspot approach to defining clusters of prey aggregations (segments with mean prey density 

>95th percentile of values across all segments); (2) incorporating species-specific prey hotspots 

or one multi-prey hotspot metric; and (3) from local to regional spatial scales (i.e., number of 

prey hotspots within 25, 50, and 100 km of each segment). Key questions for this study were: (1) 
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Can we successfully model predator-prey relationships across a large marine ecosystem using 

hotspot prey metrics? and, (2) What are the functional relationships for humpback whales and 

their most common prey in the CCLME? 

Due to effects of grazing, behavioral patterns, and predator avoidance, we expected to see 

similar weak or negative association of predators and prey hotspots at smaller scales and positive 

association as larger scales (Haury et al., 1978; Logerwell & Hargreaves, 1996; Fauchald et al., 

2000). We also anticipated stronger positive relationships using a multi-prey hotspot metric 

because of the prey switching ability and high mobility of humpback whales. Although we did 

not include environmental drivers of prey (i.e., prey accessibility), combining prey removes 

some of the variability, allowing us to assess the relationship of humpback whales as a generalist 

feeder to prey as “total food”. 

We discuss our modeling results as implications for regional and large ecosystem scale 

management for Distinct Population Segments (DPSs) for humpback whales, as defined under 

the Endangered Species Act. A multi-regional assessment of the relationship between humpback 

whales and prey hotspots is relevant because DPSs are distributed in different, partially 

overlapping regions, feeding at local hotspots with varying prey species composition (Wright et 

al., 2015, 2016; Witteveen et al., 2015). Enhancing our understanding of the relationships 

between humpback whales and their prey can improve the sustainable management of a 

protected-species at risk of entanglement (Santora et al., 2020), ship strikes (Dransfield et al., 

2014), exposure to anthropogenic noise (Redfern et al., 2017), and pollution (Elfes et al., 2010) 

and commercially important fisheries from local scales (humpback whale DPSs and stock-

specific prey) to regional scales (all humpback whales as a feeding group and species-specific 

prey). 

Page 8 of 57 



  

  

  

      

   

  

   

 

  

    

  

    

   

    

  

  

  

 

   

 

 

  

 

   

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

METHODS 

Case Study – Humpback Whale Populations and Prey in the California Current 

The CCLME is a large, dynamic, and spatially heterogeneous marine environment 

spanning Vancouver Island, British Columbia, Canada to Baja California, Mexico. It is an 

eastern boundary upwelling system with areas of seasonally high primary productivity that 

relates to the formation and maintenance of trophic hotspots relative to upwelling strength and 

transport dynamics. These hotspots enhance predator-prey interactions by attracting resident 

krill, forage fish, seabirds, and marine mammals (Nur et al., 2011; Sigler et al., 2012; Santora et 

al., 2017, 2018). Humpback whales switch prey throughout the CCLME. Depending on which 

prey is most abundant or accessible, these foraging generalists (Witteveen et al., 2015; Fleming 

et al., 2016) may feed on krill or small schooling forage fish (Nemoto, 1957, 1959; Rice, 1963; 

Pauly et al., 1998). During spring (Mar–Apr), humpback whales migrate from discrete calving 

areas off Hawaii and the coasts of Mexico and Central America to feed in the CCLME. These 

whales are managed as Distinct Population Segments (DPS; Federal Register, 2016). Whales 

coming from Hawaii (a DPS not at risk under the U.S. Endangered Species Act) forage primarily 

in northern British Columbia and Southeast Alaska. Whales coming from the coasts of Mexico 

and Central America calving areas comprise two DPSs listed under the U.S. Endangered Species 

Act. While the two DPSs can be further classified into migratory herds or demographically 

independent populations (Martien et al., 2020, 2021; Taylor et al., 2021; Curtis et al., 2022), 

broadly the Threatened Mexico DPS spends winter off northern mainland Mexico and the 

Revillagigedo Islands. These whales forage along a wide range of North American coastline, 

from California to the Bering Sea (Calambokidis et al., 2008; Barlow et al., 2011; Bettridge et 
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al., 2015). The Endangered Central America DPS winters off southern Mexico and Central 

America, as far south as Panama, and forages predominantly off California and southern Oregon 

(Calambokidis et al., 2008; Barlow et al., 2011). 

Ecosystem Conditions 

In 2018, ocean climate and ecosystem conditions in the CCLME were recovering from an 

unprecedented three-year (2014–2016) marine heatwave (Frölicher et al., 2018)—a combination 

of the warm water “blob”, attributed to strongly positive sea level pressure anomalies over the 

Gulf of Alaska (Bond et al., 2015) and El Niño, linked with extratropical Pacific Ocean 

atmospheric variability (Jacox et al., 2016). While still relatively warm in some areas, such as off 

southern California (Wells et al., 2017; Thompson et al., 2018), cooler than average areas formed 

in the summer off Washington, Oregon, and central California. Indicators of upwelling (i.e., 

vertical volume transport and nitrate flux) in 2018 were close to their respective long-term 

averages. The ecosystem conditions in 2018 also supported a stable northern stock of northern 

anchovy (north of Cape Mendocino), an increasing central stock of northern anchovy (south of 

Cape Mendocino), and a stable biomass of Pacific herring (Stierhoff et al., 2019). 

Survey and Data Collection 

From June 26 through September 23, 2018, the CCES spanned the west coasts of 

Vancouver Island, Canada, and the continental U.S., from ~ 30-m depth to ~200 nautical miles 

offshore. Data were collected aboard the NOAA ship Reuben Lasker. Prey data were collected 

via paired acoustic and net tow sampling (NOAA SWFSC 2022a,b). The acoustic trawl method 

is described in detail by Stierhoff et al. (2019). Briefly, multi-frequency and wideband 
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transceivers measured volume backscatter strength (dB re 1 m2 m-3) along predetermined 

tracklines continuously throughout the survey. A surface trawl was deployed at night in up to 

three areas where acoustic echoes from probable CPS schools were observed that day. The 

acoustic survey included 127 east-west transects spanning a total of 11,304.6 km and included 

169 nighttime trawls. Stierhoff et al. (2019) describes biomass conversions in detail. Briefly, 

catches of target species were sorted, weighed, and enumerated to estimate the proportion of 

each species and their lengths in each night’s collection, or “cluster”, of trawl catches. Acoustic 

backscatter was apportioned to CPS and krill in 5 m depth bins over 100 m intervals and the net 

tow data were used to convert the echo data to estimated biomass densities (kg m-2) of northern 

anchovy and Pacific herring. Krill species and lengths were insufficiently sampled, so krill area 

backscattering coefficient (ABC; m2 m-2), a proxy for biomass density, was estimated along the 

same 100-m transect intervals. 

Visual surveys of marine mammals were conducted concomitantly with acoustic 

sampling for a total of 80 days between 26 June and 23 September 2018 (Moore, 2021). The 

marine mammal survey spanned 12,857 km. The standard line-transect-survey method is 

described in detail by Henry et al. (2020). Briefly, the ship traveled at ~10 knots while marine 

mammal observers sighted animals from the vessel’s flying bridge using 25x150 mounted 

binoculars. Sighting information (e.g., species and group size) and environmental conditions 

(e.g., weather, visibility, glare, swell height, and Beaufort sea state) were recorded. Only 

standardized sighting data collected along daytime track lines in sea state ≤5 were included. 

Predator-Prey Data 
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For the marine mammal sightings data, contiguous “main” transect lines (up to 136 km 

long) were divided into nominal 10-km transect segments [swfscDAS package v 0.5.2.9; 

(Woodman, 2021) in R (v 4.1.0, R Core Team, 2021)]. This segment length was chosen as a 

tradeoff of various factors affecting modeling performance. Longer segments minimize between-

segment sampling variance and spatial autocorrelation in sighting rates, whereas shorter 

segments better match the spatial resolution of environmental gradients of interest (Hedley & 

Buckley, 2004; Buckland et al., 2001, 2004). Main transect lines did not exist in exact multiples 

of 10 km, so dangling segments <5 km were appended to an adjacent 10 km segment along the 

main transect, while those between 5 and 10 km were considered their own segment and chosen 

randomly along the main transect, following the methods described in detail by Becker et al. 

(2010). If the entire main transect was <10 km, it was treated as a separate segment regardless of 

length. The resulting dataset contained a total of 1,650 segments, with 38.5% equal to the target 

length of 10 km, 38.5% with a length of 5-10 km or 10-15 km, and 23% with a length of <5 km. 

Any 100 m CPS transect interval within a 5 km radius of a segment’s geographical midpoint 

(relative to the vessel’s position) was paired with that segment. Herring and anchovy biomass 

densities (kg m-2) and krill ABC (m2 m-2; a proxy for biomass density) were averaged across all 

the 100-m intervals along each segment. Humpback whale sightings were summed along each 

segment. Only segments with both marine mammal sighting effort and prey effort were retained 

for the analysis, resulting in 697 segments (Fig. 1). 

Predator-Prey Modeling 

Generalized Additive Model (GAMs; Hastie and Tibshirani, 1990) were developed in R 

with the mgcv package (v 1.8-34; Wood, 2004). Using humpback whale counts along each 
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segment as the response variable, w e  constructed  models using  either direct measures of prey 

(i.e., biomass density) or de  rived pre y hotspot  metrics  as explanatory variables.  On  a segment  

mean  biomass density (across 100-m intervals  in that segment) was used  for herring and 

anchovy, and krill ABC  was used for krill. Prey hotspot  metrics were based on the  number of 

prey hotspots  within 25, 50, and 100 km of each transect segment  to represent  varying  scales  (see  

next paragraph). Following the methods described in Becker et al., (2020), effective  area  

searched  (EAS) was estimated for each segment as a product of the length of the effort segment  

(i), two times  the effective strip half-width  (ESWi), and the probability of detection on t he  

trackline  (g(0)i):  

 

EAS =  2 ∙ Li  ∙ ESWi  ∙ g(0)i  

 

Encounter rate variance was  modeled  using a  Tweedie distribution t o account for 

overdispersion, fit using  restricted maximum  likelihood (REML), thin plate regression spline  

with the penalty modified toward shrinkage, and natural log of the effective area  searched  as an  

offset. Prey hotspots were identified for each species. Any  segment with mean prey density 

greater than the 95th  percentile  of values across all segments  in the dataset was designated as a  

hotspot for that  prey species. We  then  separately quantified, for each segment, the  total  number 

of herring, anchovy, krill  hotspots  separately  within 25, 50, and 100 km, i.e., local to regional  

scales (Fig.  1). We also tallied, for each segment, t he total number of hotspots  of any prey type  

within  25, 50, and 100 km of that segment, which we refer to as  multi-species  prey hotspots.  

Model performance was evaluated using explained deviance, Akaike’s Information 

Criteria (AIC; Akaike, 1970), REML  value, area under the receiver operating characteristic  
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curve (AUC; Fawcett, 2006), true skill statistic (TSS; Allouche et al., 2006), and root mean 

squared error (RMSE). Models with lower AIC and REML values are considered parsimonious. 

AUC, which is calculated from receiver operating characteristic (ROC) curves, measures the 

accuracy of predicting observed presences and absences (between 0 to 1) with >0.5 indicating 

better than random skill. TSS (Sensitivity + Specificity - 1) accounts for false negative and 

positive errors (between -1 to +1) with +1 indicating perfect agreement. The ROCR package (v. 

1.0-11, Sing et al. 2005) was used to estimate TSS and AUC. For the purposes of this study, we 

used TSS and AUC as goodness-of-fit metrics. 

RESULTS 

Predator-Prey Distributions 

The abundance, composition, and distribution of prey species varied across the entire 

survey area (Table 1, Fig. 2a-b). Herring were found mostly off Vancouver Island but extended 

southward to Oregon. Mean herring biomass density was larger on the continental slope, but the 

largest herring biomass density on a single segment was observed on the shelf off Vancouver 

Island. High krill-ABC values were distributed throughout the entire survey area, with largest 

values off Vancouver Island to northern Washington, and between Cape Blanco and Cape 

Mendocino. Lower krill-ABC values spanned from San Francisco to Southern California. The 

segment with the largest krill-ABC value was found off Vancouver Island, just south of the 

segment with the largest herring biomass density. Mean krill-ABC was larger on the slope, but 

there was also more variability in krill-ABC on the slope. Anchovy were present off Washington 

and south of Point Conception, but the largest biomass densities spanned from San Francisco to 

Monterey Bay. Mean anchovy biomass density across all segments was larger on the shelf, but 
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the largest anchovy biomass density on a single segment was observed on the continental slope 

of the Monterey Submarine Canyon. 

Humpback whale distribution superficially resembled the collective distributions of 

herring, krill, and anchovy (Table 1, Fig. 2c-d), with the largest counts off southern Vancouver 

Island, between Cape Blanco to Cape Mendocino, and off San Francisco and Monterey Bay. A 

total of 749 humpback whales were counted in 431 sighting events. Whale counts were summed 

along each 10 km segment, resulting in 175 segments with whale sightings. Counts on a segment 

ranged from 1 to 26 (x̅ =4, SD=5) whales. Whale density (Fig. 2d), which was calculated as 

counts per latitude (for illustrative purposes) divided by effective area searched (see Predator-

Prey Modeling), mirrored the trend seen with the count data, indicating counts were influenced 

by effort and sighting conditions during surveys. The largest number of humpback whale 

sightings occurred just south of San Francisco (20% of sightings) followed by off Monterey Bay 

(15% of sightings). The total number and range of humpback whales on the shelf (n=379, range 

1-25) were close to the number and range of humpback whales on the slope (n=370, range 1-25). 

Predator-Prey Hotspot Distributions 

We identified 35 segments considered hotspots for herring, krill or anchovy based on our 

cutoff, i.e., these segments were in the upper 5th percentile of values across 10-km segments. 

(Fig. 3a). For herring, any segment with a biomass density greater than 3.64x10-4 kg m-2 was 

defined as a hotspot. For krill, any segment with area backscatter greater than 4.66x10-5 m2 m-2 

was defined as a hotspot. For anchovy, any segment with a biomass density greater than 2.39x10-

2 kg m-2 was defined as a hotspot. The distribution of the prey hotspots visually mirrored the raw 

distribution of prey densities (Fig. 3b). 
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Herring hotspots were identified off Vancouver Island (n=30), around the mouth of the 

Columbia River (n=3), and north of Cape Blanco (n=2). Of the 35 hotspots, herring hotspots on 

the shelf were identified off Vancouver Island (n=14), around the mouth of the Columbia River 

(n=3), and north of Cape Blanco (n=1). The remaining hotspots on the slope were identified on 

the slope off Vancouver Island (n=16) and north of Cape Blanco (n=1). 

Krill hotspots were identified off southern Vancouver Island (n=17), north of the 

Columbia River (n=3), from Cape Blanco to Cape Mendocino (n=12), and from San Francisco to 

Monterey Bay (n=3). Of those 35 krill hotspots, more were distributed on the slope than on the 

shelf. On the slope, krill hotspots were identified off southern Vancouver Island (n=11), north of 

the Columbia River (n=3), from Cape Blanco to Cape Mendocino (n=8), and from San Francisco 

to Monterey Bay (n=1). On the shelf, krill hotspots were identified off southern Vancouver 

Island (n=6), from Cape Blanco to Cape Mendocino (n=4), and from San Francisco to Monterey 

Bay (n=2). 

Two anchovy hotspots were identified around the mouth of the Columbia River and the 

remaining 33 were identified off San Francisco (n=28) and Southern California (n=5). Most of 

the 35 anchovy hotspots were distributed on the slope near the mouth of the Columbia River 

(n=1), from San Francisco to Monterey Bay (n=23), and in and Southern California (n=4). A 

smaller number of hotspots were found on the shelf, near the mouth of the Columbia River 

(n=1), off San Francisco (n=5), and in Southern California (n=1). 

The locations of the prey hotspots generally corresponded spatially with the locations of 

higher counts of humpback whales (Fig. 3b). Of the 174 segments with whale sightings, 48 

(27.6%) were segments with hotspots. Of the 522 segments with no whale sightings, only 77 

(14.8%) were segments with hotspots. 
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Models of Humpback Whale Counts vs. Prey Biomass 

The GAMs using biomass density (for herring and anchovy) or ABC (for krill) along 10-

km transect segments resulted in flat functional response for herring and decreasing functional 

response for krill, suggesting that these models did not adequately describe spatial overlap 

between humpback whales and prey (Fig. 4). The functional plots suggest no relationship 

between humpback whales and herring and krill densities, but a slightly positive relationship 

between humpback whales and anchovy density. Deviance explained by the model for direct 

measures of prey biomass density was 8.76 percent (Table 2). AIC and REML were lower for the 

density model compared to the null model; AUC was 0.67; TSS was 0.3; RMSE was 2.91. 

Models of Humpback Whale Counts vs. Species-Specific Prey Hotspots 

The species-specific prey hotspot models indicate prey- and scale-specific relationships 

with humpback whale counts (Fig. 5a). The functional plots suggest a positive relationship 

between humpback whales and the number of herring hotspots within 25, 50, and 100 km of each 

segment. For krill and anchovy, the relationships were more complex but suggested that whale 

densities increased as the number of hotspots within 25, 50, or 100 km of a segment increased 

from zero to some positive number. For krill, whale density plateaued as the number of krill 

hotspots within 25 km approached 2 but then whale density continued to increase as the number 

of krill hotspots within 50 km increased. Whale density decreased as the number of hotspots 

within 100 km increased from 10 to 15 hotspots, but then whale density increased again as the 

number of krill hotspots at this scale increased beyond 15. For anchovy, whale density increased 

with the number of prey hotspots within 25, 50, or 100 km increased, although as the number of 
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anchovy hotspots approached their maximum values at the larger distance scales, whale counts 

decreased. Deviance explained by the separate prey hotspot models was variable, ranging from 

15.48 to 26.28 percent (Table 3). The model using number of separate prey hotspots within 100 

km of each segment had the lowest AIC and REML, and the model using the number of separate 

prey hotspots within 50 km of each segment had the highest AUC and TSS. RMSE values 

ranged from 2.74 to 2.87. The species-specific prey hotspot models improved at larger scales. 

Models of Humpback Whale Counts vs. Multi-Species Prey Hotspots 

The multi-species prey hotspot models, which tallied the total number of hotspots across 

all prey (Fig. 5b), suggests a positive increase in humpback whale counts as the number of prey 

hotspots within 25, 50, and 100 km of each segment increases. This relationship indicated a 

plateau followed by an increase with the number of hotspots. Deviance explained by the multi-

species prey hotspot models ranged from 11.68 to 16.98 percent (Table 3). The model using the 

number of prey hotspots within 50 km of each segment had the lowest AIC and REML, and the 

model using number of prey hotspots within 25 km of each segment had the highest AUC. TSS 

values ranged from 0.25 to 0.40 and the RMSE values ranged from 2.77 to 2.87. At 50 and 100 

km, the separate prey hotspot model outperformed the combined prey hotspot models in terms of 

model performance metrics, but at 25 km, the combined prey hotspot model and separate prey 

hotspot model were similar. 

DISCUSSION 

We investigated associations between highly mobile humpback whales and their herring, 

anchovy, and krill prey using direct metrics of prey biomass and derived metrics of prey hotspots 
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at multiple spatial scales. Concurrent survey data allowed for investigation of predator-prey 

spatial relationships involving multiple species of fishery management interest. Accounting for 

heterogeneity of predator-prey aggregations by using the number of hotspots within spatial scales 

relevant to humpback whales (25, 50, and 100 km) explained the geospatial variability of whale-

prey associations to inform generalist foraging patterns of humpback whales. 

Models using Direct Measures of Prey Biomass Density 

Similar to some previous studies, our models relating coincident measures of predator 

and prey biomass on a segment did not perform well at predicting humpback whale distributions 

(e.g., Torres et al., 2008). Some other recent studies, however,—conducted at much finer scales 

than our study—have identified relationships between coincident measures of predators and 

prey. For example, mean krill volume backscatter and density were reasonably good predictors 

of blue whale (Balaenoptera musculus) presence/absence at spatial scales of 4 km (Barlow et al., 

2020) and 10-40 km (Miller et al., 2019), perhaps reflecting the relative ease of modeling the 

simpler trophic chain of krill-feeding blue whales (Nemoto, 1970) compared to predators that 

feed on multiple fish and krill species. Their models also selected prey metrics that added 

information about prey quality (e.g., number, height, width, and depth of aggregations). Hazen et 

al. (2009) found the surface feeding behavior of tagged humpback whales was correlated with 

high sandlance (Ammodytes spp.) mean volume backscatter within 500 m. 

Models using Derived Prey Hotspot Metrics 

In our study, humpback densities were better predicted by the number of prey hotspots 

within some region around a segment than by the amount of prey on the segment itself. The 
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species-specific prey hotspot models performed better than the multi-species hotspot, particularly 

as scales increased. Herring hotspots were always positively associated with humpback whale 

counts while the relationship with krill and anchovy became more variable with increasing scale. 

As spatial scales increased, some models became non-linear or decreased as hotspots increased. 

The largest concentrations of predators are not always associated with the largest concentrations 

of prey (e.g., Hammond et al., 2013; Benoit-Bird et al., 2013; Boyd et al., 2020; Fall et al., 2021) 

and at certain levels of prey density, functional response curves level off (Mehlum et al., 1999). 

This suggests a potential density-dependent relationship with the number of prey hotspots in an 

area limiting the number of predators that can exploit that prey at any given time. 

Humpback whales were typically observed on the periphery of hotspots (see Fig. 3b). 

One possible explanation for this is predator-avoidance behavior by prey, which has been 

hypothesized as the cause of negative correlations between predators and prey at very fine scales 

(Haury et al., 1978; Logerwell & Hargreaves, 1996; Fauchald et al., 2000). Additionally, there 

may also be some threshold above which the abundance of prey becomes unimportant for 

predators (i.e., saturation), resulting in stronger or at least equally strong relationships between 

whales and hotspots of intermediate size (e.g., Hunt et al., 1990; Piatt & Methven, 1992; Benoit-

Bird et al., 2013). Oceanographic features (e.g., fronts, slicks, and shallow canyon heads) can 

facilitate the concentration of krill, forage fishes, and their predators. Therefore, the offset 

between whales and greatest number of hotspots may also reflect lack of additional 

oceanographic features in the models. 

Finally, variability in species-specific prey hotspot models may also be due to whales 

responding differently to different prey types within the same regions in ways not specified by 

our models. Prey switching may play a role in regions where there were fewer aggregated 
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hotspots of preferred (or potentially more energetically beneficial) prey. Prey switching may 

have been the reason Rockwood et al. (2020) found no strong overlap between krill hotspots and 

humpback whales off northern California. These different prey types may also occupy different 

habitats within a region, some of which may be more accessible by predators, and this may have 

influenced the non-linear or negative relationships we found. However, our models did not 

include depth or distance to significant features that have been shown to link both predator and 

prey abundance or density (e.g., Becker et al., 2020; Barlow et al., 2020; Derville et al., 2022). 

Regional Variability in Abundance of Prey and Predator-Prey Relationships 

Prey hotspots differed among regions, corresponding with distinctive northern, central, 

and southern biogeographic areas of the California Current. Herring was overwhelming found in 

the north, anchovy in the south, and krill throughout the CCE. These prey are managed as 

separate stocks (e.g., Stierhoff et al., 2019) and have been shown to be affected differently by 

interannual and decadal environmental variability, marine heatwaves, climate change, and past 

and ongoing fishing pressure (Enticknap et al., 2011). For example, herring in British Columbia 

increased from 1951 to 2012 (Thompson et al., 2017) while declining in San Francisco Bay from 

1979 to 2017 (Thayer et al., 2020). The central stock of anchovy crashed between 2009 and 2015 

(MacCall et al., 2016; Sydeman et al., 2020) then rapidly recovered (Stierhoff et al., 2020; 

Weber et al., 2021), while the stock off Washington and Oregon has remained small (Stierhoff et 

al., 2020). Krill display high variability (Cimino et al., 2020; Fiechter et al., 2020; Rastetter et 

al., 2021), declining followed by rapid recovery during some El Niño and marine heatwaves but 

increasing during others (Brinton & Townsend, 2003; Lilly & Ohman, 2021). 
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Assemblages of the humpback whale DPSs differ among these distinctive biogeographic 

areas. Although the Hawaii, Mexico, and Central America DPSs overlap in portions of their 

summer feeding areas, there are differences in the proportions of whales from each DPS at 

foraging locations spanning British Columbia and the U.S. West Coast (Calambokidis et al., 

2008, 2000; Barlow et al., 2011; Wade et al., 2016). We hypothesize that at the time of our 

study, animals from the Mexico DPS off British Columbia, Washington, and Oregon were more 

likely targeting herring, krill, and anchovy, whereas the Central America DPS off California 

were more likely targeting anchovy and krill. Humpback whales have demonstrated the ability to 

shift their foraging patterns in the CCE in response to interannual ecosystem fluctuations 

(Fleming et al., 2016). They also display extremely strong site fidelity to feeding areas (Steiger et 

al., 1991; Calambokidis et al., 1996, 2000, 2001; Rasmussen et al., 2012; Baker et al., 2013; 

Witteveen & Wynne, 2017; Martien et al., 2021). Therefore, from a bottom-up perspective, the 

loss of prey at region-specific foraging ground could impact the DPSs differently in terms of 

energy acquisition needed for survival, growth, reproduction, migration, and other normal life 

functions. 

Management Implications 

The Central America DPS remains listed as Endangered, while the Mexico DPS has been 

downlisted to Threatened (Federal Register, 2016). The estimated Central America DPS 

abundance is 1,494 (CV=0.167) and has a slower growth rate (1.8% per year) than the Mexico 

DPS, whose estimated abundance is 3,479 (CV=0.099) (Curtis et al., 2022). If the different DPSs 

are targeting different prey in different regions, then the recovery of the Central America DPS 

may also be negatively impacted by the instability of anchovy and sardine (another possible prey 
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type for humpback whales, which was largely absent during this study; see: Stierhoff et al., 

2020) off California, whereas the Mexico DPS may benefit by also targeting larger more stable, 

northern populations of herring and krill. 

As prey stocks fluctuate within a region (either due to natural variability or climate 

change), prey accessibility and preference may impact the cross-shore and north-south 

distribution of foraging humpback whales. Specifically, whales may shift their distributions to 

match changes in prey, which could exacerbate risk to anthropogenic threats like entanglement in 

fishing gear (Santora et al., 2020) and ships strikes (Meyer-Gutbrod et al., 2021). Because most 

entanglements in fishing gear occur in coastal waters where fishing activity is highest (Saez et 

al., 2013, 2021), whales may be at higher risk of entanglement when foraging on fish on the 

nearshore continental shelf, which is especially narrow off California, than on whales feeding on 

krill at the shelf-break and slope associated with submarine canyon habitat (Santora & Reiss, 

2011; Fossette et al., 2017; Santora et al., 2018). This may have been the case when humpback 

whale entanglements spiked in 2015 and 2016 following the onshore concentration of anchovy in 

Monterey Bay where crab gear was also concentrated (Santora et al., 2020). 

In our study, humpback whales and herring hotspots were equally distributed on both the 

continental shelf and slope, while there were slightly more krill and anchovy hotspots distributed 

on the continental slope and they were much more aggregated off San Francisco and Monterey 

Bay. This suggests that the risk of entanglement of whales in the nearshore waters of our study 

remained. It also suggests differential risk to the different DPSs in terms of their overlap with 

vessel traffic and fishing activities in these regions (Halpern et al., 2009). 

The larger feeding group of humpback whales in the CLME has increased during the past 

several years (Becker et al., 2020; Calambokidis & Barlow, 2020). This translates to an increased 
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demand for prey throughout the CCLME, which necessitates a focus on the foraging ecology 

needs of these growing humpback whale populations. With daily modeled consumption rates of 

krill at 9,039 kg d-1 (2,104-15,103 kg d-1) and anchovy at 1,554 kg d-1 (707-2,653 kg d-1) to 5,353 

kg d-1 (2,436-91,41 kg d-1) (Savoca et al., 2021), this begs the question: is there enough standing 

forage fish and krill to support the growth in these DPSs? How will climate change broadly 

change predator and prey distribution and abundance? And will these broader changes further 

increase anthropogenic threats and/or reveal new threats? 

Relevance of our Findings for Ecosystem-based Management 

The multi-spatial scale investigation involving multiple prey species demonstrated that 

there are typically more predators in areas with more prey hotspots, notably off Vancouver 

Island, from Cape Blanco to Cape Mendocino, and from San Francisco to Monterey Bay. This 

study included Threatened and Endangered humpback whales and commercial important fish 

species (PFMC, 2016) protected or managed by NOAA. Understanding these scale-dependent 

linkages may be useful to consider when implementing ecosystem-based management 

approaches at different scales, and within the framework of a changing climate (Poloczanska et 

al., 2013; Silber et al., 2017). Below we describe implications from our study for ecosystem-

based management consideration at a variety of scales. However, the patterns we found represent 

one snapshot in time and predator-prey patterns may shift; therefore, adaptive management 

strategies will be necessary as more knowledge is gained. 

At small scales, the linkages between humpback whales and their prey may better reflect 

the perspective of individual foraging humpback whales and aggregations of their prey. Smaller-

scale relationships, which we discuss above, may reflect complex density-dependent 
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relationships, prey preferences, and prey accessibility, and density thresholds. For example, few 

anchovy hotspots and zero krill hotspots despite higher biomass densities of both suggests that 

density thresholds were not high enough to minimize the energetic cost of foraging (Goldbogen 

et al., 2011; Hazen et al., 2015) and explain why there were few whales present off southern 

California. However, the modeled relationship between anchovy hotspots and humpback whale 

abundance was positively linear at the smallest scale, suggesting that management spanning San 

Francisco to Monterey Bay, where anchovy hotspots dominated, might be more effective at this 

scale. Management might not always be feasible at smaller scales, especially scales smaller than 

this study (<25 km), but knowledge of the relationships, and what may be driving them, may be 

useful for predicting future predator-prey hotspot aggregations, potentially temporally as well. 

At intermediate scales, linkages between humpback whales and their prey reflect 

assemblages of humpback whale DPSs and distinct prey stocks. This allows for different regions 

to be managed in terms of the specific concerns in those regions. However, there are a number of 

differences among the regions that may influence predator and prey abundance and distribution 

with important implications and considerations for management. For example, the positively 

linear relationship between herring hotspots and humpback whale abundance at every scale 

suggests that management, especially off Vancouver Island where herring hotspots dominated, 

could still be effective at intermediate scales. Management at this scale also allows for a specific 

focus on areas where prey switching may also increase pressure for commercially important 

fishes or vice versa (e.g., Surma & Pitcher, 2015; Koehn et al., 2020). Individual krill models 

were variable at all scales likely due to overlap and prey switching with herring or anchovy. In 

areas where it is less clear which species humpback whales may be targeting, multi-species prey 

hotspots metrics may be more appropriate and easier to interpret. This scale is likely the most 
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effective for management of threatened and endangered humpback whales and their prey. With 

targeted trawls at consistent time intervals at regions where whales are present may allow for 

better predictions of whale aggregations. Estimating prey consumption by predators at these 

intermediate scales may also help manage targeted stocks of small pelagic fish and in turn their 

marine mammal predators. 

At the largest scale, especially at scales larger than this study (>100 km), linkages 

between humpback whales and their prey hotpots can be considered at the large marine 

ecosystem level. Humpback whales, though comprising three distinct DPSs, overlap on feeding 

grounds, forming a larger feeding group through which migration and interchange does occur. 

Prey at the ecosystem level comprises multiple stocks but is often managed as a group (i.e., 

coastal pelagic species). While some detail and nuance are lost at this scale (e.g., specific DPSs 

or prey species), these larger scales may be considered more feasible from a management 

perspective. However, our study did not find any linkages at this scale (i.e., direct measures of 

mean prey biomass densities on 10-km segments). Thus, caution should be taken when making 

management decisions across a large marine ecosystem based solely on direct measures of prey 

biomass densities within a segment, as this may not be enough to indicate sufficient resources. 

Recommendations for Future Work 

Future studies might consider including a temporal component to examine how these 

hotspots change across multiple years. Additionally, due to degrees of freedom in the GAMs 

from our data, we were unable to explore relationships on the continental shelf versus the slope, 

regionally stratified relationships, or information about specific DPS distribution. However, by 

incorporating this additional information and modelling approaches (e.g., number of whale 
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hotspots correlated with number of prey hotspots), this might reveal stronger predator-prey 

linkages. Additional scales (both larger and smaller) might be considered as well as additional 

prey metrics, especially metrics that include information about prey accessibility (e.g., depth 

specific models of prey), prey quality (e.g., caloric value), stock-specific prey information, and 

oceanographic aspects of collocated whale and prey hotspots. Additionally, different metrics 

may be more appropriate for some prey types depending on the aggregation behavior of that 

prey, which may also vary across different scales. We also did not account for whether whales 

were actively feeding. Whales sighted during our surveys might have been transiting between 

concentrations of prey or engaged in other behaviors, such as socialization on resting. 

Additionally, we incorporated each humpback whale sighting equally and did not account for 

group size. This additional information might help account for the effect of density-dependence 

patterns we saw in some of the models where prey hotspots were kept separate. 
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Entire Study Area  
 segments  min  max  mean  sd  

 Herring  145  2.83x10-8  1.91x10-2  8.92x10-4  2.70x10-3 

 Krill  667  9.98x10-9  1.07x10-1  9.54x10-4  4.92x10-3 

Anchovy   263  9.24x10-10  2.77x10-1  1.13x10-2  3.00x10-2 

Humpback Whales   175  0.88  25.5  4.28  4.82 
On the Shelf (<= 200m)  

 segments  min  max  mean  sd  
 Herring  62  4.48x10-8  1.91x10-2  1.49x10-3  3.82x10-3 

 Krill  167  1.69x10-8  1.41x10-2  1.01x10-3  2.33x10-3 

Anchovy   86  3.06x10-8  7.80x10-2  4.79x10-3  1.32x10-2 

Humpback Whales   77  0.93  25.5  4.83  5.1 
On the Slope (> 200m)  

  segments  min  max  mean  sd  
 Herring  83  2.83x10-8  9.43x10-3  4.46x10-4  1.22x10-3 

 Krill  500  9.98x10-9  1.07x10-1  9.36x10-4  5.52x10-3 

Anchovy   177  9.24x10-10  2.77x10-1  1.45x10-2  3.50x10-2 

Humpback Whales  
 

 98  0.88  25  3.85  4.57 
  

1122 Table 1.  Summary statistics (i.e., number of segments, minimum, maximum, mean, and standard 

deviation (s d)) for mean herring biomass density (kg m -2), mean  krill  area backscattering  

coefficient  (ABC;  m2  m-2), mean anchovy biomass density (kg m-2), and humpback whale counts  

(number of individuals) spanning the entire study, on the shelf (<= 200 m bathymetric depth;  

n=193), and on the slope (>200 m bathymetric depth; n=504).  
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 Model Deviance  AIC  REML  AUC  TSS  RMSE  
Humpback Whale Counts ~ 1, 
offset=log(EAS.76), family=tw, 

 method=REML  0.00  1642.54  819.73  0.50  0.00  3.02 
Humpback Whale Counts ~ Mean Herring +  

 Total Krill + Mean Anchovy, 
offset=log(EAS.76), family=tw, 

 method=REML 
 

 8.76  1610.92  812.97  0.67  0.30  2.91 
  

1128 Table 2. Summary of models predicting  whale counts based on mean herring, krill, and anchovy 

on each segment.  Performance metrics included deviance, Akaike’s Information Criteria (AIC), 

Restricted Maximum Likelihood (REML), area under the receiver operating characteristic curve  

(AUC), the true  skill statistic (TSS), and root mean square error (RMSE).  
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Hotspot 
Range   Model Deviance  AIC  REML  AUC  TSS  RMSE  

null  

Humpback Whale Counts ~ 1, 
offset=log(EAS.76), family=tw, 

 method=REML  0.00  1642.54  819.73  0.50  0.00  3.02 
  Species-Specific Prey Hotspots 

25 km  

Humpback Whale Counts ~ Herring +  
Krill + Anchovy, offset=log(EAS.76), 

 family=tw, method=REML  15.48  1577.51  797.69  0.73  0.39  2.87 

50 km  

Humpback Whale Counts ~ Herring +  
Krill + Anchovy, offset=log(EAS.76), 

 family=tw, method=REML  25.98  1523.30  774.84  0.77  0.44  2.76 

100 km  

Humpback Whale Counts ~ Herring +  
Krill + Anchovy, offset=log(EAS.76), 

 family=tw, method=REML  26.28  1519.53  772.53  0.75  0.39  2.74 
  Multi- Species Prey Hotspots 

25 km  

Humpback Whale Counts ~  
Combined Prey, offset=log(EAS.76), 

 family=tw, method=REML  15.88  1570.70  791.00  0.72  0.38  2.79 

50 km  

Humpback Whale Counts ~  
Combined Prey, offset=log(EAS.76), 

 family=tw, method=REML  16.98  1566.36  791.10  0.72  0.40  2.77 

100 km  
 

Humpback Whale Counts ~  
Combined Prey, offset=log(EAS.76), 

 family=tw, method=REML  11.68  1593.80  801.78  0.67  0.25  2.87 
  

1133 Table 3. Summary of models comparing humpback whale counts to various prey hotspot  

metrics.  Performance metrics included deviance, Akaike’s Information Criteria (AIC), Restricted 

Maximum Likelihood (REML), area under the receiver operating characteristic curve (AUC), the  

true skill statistic (TSS), and root mean square error (RMSE).  
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Figure 1. Concurrent effort (where marine mammal line transect survey sampling effort was 

conducted at the same time as acoustic (prey) sampling effort) during the 2018 California 

Current Ecosystem Survey cruise (June 26-September 23) with humpback whale biologically 

important areas (Calambokidis et al. 2015; Federal Register, 2021). Red boxes indicate location 

of two regional insets showing conceptual models from local to regional scales used to 

enumerate the number of separate prey hotspots within 25, 50, and 100 km of each 10-km 

transect segment (represented as black lines with mid-point as white circle). Hotspots were 

defined as any segment with mean herring (orange circles), krill (green circles), and anchovy 

(purple circles) prey density > 95th percentile of values across all segments. Scale bar represents 

200 km. 

Figure 2. (a) Map of mean herring biomass density (kg m-2; orange circles), mean krill area 

backscatter (m2 m-2; green circles), and mean anchovy biomass density (kg m-2; purple circles) 

on 10-km segments. Segment effort in black. The 200-m isobath in black signifies 

onshore/offshore designation. (b) Histogram of proportion of total biomass for each prey on 1-

degree latitude bins. (c) Map of total humpback whale counts on 10-km segments. Segment 

effort in black. (d) Histogram of proportion of total whale counts on 1-degree latitude bins (blue 

bars) with total number of whale counts per bin. Secondary x-axis (upper axis) shows whale 

density per latitude (counts divided by effective area searched; black dotted line). The 200-m 

isobath in black signifies onshore/offshore designation. 

Figure 3. (a) Discrete probability distribution of mean herring biomass density (kg m-2; orange 

bars), mean krill area backscatter (m2 m-2; green bars), and mean anchovy biomass density (kg 
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m-2; purple bars) across all segments. Vertical lines indicate 95th percentile cutoff for hotspot 

identification. Note the x axes (prey) and y axes (discrete probability distribution) are on 

different scales. Gaps on y-axis chosen at natural breaks to increase visibility of smaller values. 

(b) Humpback whale counts (blue circles, color and size indicate counts) and prey hotspots 

(defined as greater than the 95th percentile) colored by prey type (herring as orange circles, krill 

as green circles, anchovy as purple circles, and no hotspots as small grey circles). Humpback 

whale and prey data summed along 10-km segments. Corresponding effort segments in black. (c) 

Inset of San Francisco Bay Area and Monterey Bay area to show predator-prey distribution in 

finer detail. 

Figure 4. Functional plot for models exploring the relationship between humpback whale counts 

with mean prey biomass densities along the 10-km segments. The x-axis indicates the predictor 

variable (herring, krill, and anchovy) and the y-axis indicates the smoothing estimator denoted 

(by the ‘s’) with the predictor variable and estimated degrees of freedom within the parentheses. 

Note the x axes (mean herring, anchovy, and krill) are on different scales. The y axes 

(representing the contribution of each predictor variable to the fitted response, centered on zero) 

are on the same scale, with zoomed herring and anchovy plots above their respective plots to 

show the smaller-scale relationships. 

Figure 5. Functional plot for (a) species-specific prey hotspot models (i.e., herring, krill, and 

anchovy) and (b) multi-species prey hotspot models exploring the relationship between 

humpback whale counts and number of prey hotspots within 25 km, 50 km, and 100 km of the 

10-km segments. The x-axis indicates the predictor variable (herring, krill, anchovy, and multi-
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species prey). The y-axis indicates the smoothing estimator denoted by the ‘s’ with the predictor 

variable and estimated degrees of freedom within the parentheses. Note the x axes (number of 

prey hotspots) are on different scales. The y axes (representing the contribution of each predictor 

variable to the fitted response, centered on zero) are on the same scales within each scale (25, 50, 

and 100 km, respectively). 
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